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Abstract

Background: The human brain is a highly complex system that can be represented as a structurally interconnected and
functionally synchronized network, which assures both the segregation and integration of information processing. Recent
studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic
resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to
explore the topological organization of human brain networks. However, little is known about whether functional near
infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of
the human brain and reveal meaningful and reproducible topological characteristics.

Results: We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional
networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46
channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS
data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These
results were highly reproducible both across participants and over time and were consistent with previous findings based
on other functional imaging techniques.

Conclusions: Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical
imaging techniques to explore the topological organization of human brain networks. These results may expand a
methodological framework for utilizing fNIRS to study functional network changes that occur in association with
development, aging and neurological and psychiatric disorders.
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Introduction

The human brain is a highly complex network that is

interconnected structurally by a dense of cortico-cortical axonal

pathways [1] and functionally through synchronized or coherent

neural activity [2]. Mapping the human connectome and

highlighting its underlying organizational principles are crucial

to understanding the architecture of the brain and revealing

connectivity changes in entire assemblages of the brain that occur

in response to neurological and psychiatric disorders.

Recent studies have shown that human brain networks can be

constructed from a variety of neuroimaging and neurophysiolog-

ical techniques (e.g., structural MRI, diffusion MRI, functional

MRI and electroencephalography/magnetoencephalography) and

further quantitatively analyzed with graph-theory methods.

Graph-based network analysis approaches are straightforward

but powerful in characterizing topological properties of the brain

networks. Using this theory, it has been shown that human brain

networks possess many non-trivial topological properties such as

small-world topology, modularity and highly connected hubs [3–

6]. Moreover, these properties exhibit specific alterations during

normal development, aging or under pathological conditions [7–

11]. Although several imaging techniques have been employed

extensively to study connectivity patterns in the brain, it is still

largely unknown whether functional near infrared spectroscopy

(fNIRS), a relatively new optical imaging technology, can be used

to map the functional connectome of the human brain and reveal

its underlying infrastructure.

The fNIRS technique uses light in the near-infrared spectrum

(670–900 nm) to noninvasively monitor hemodynamic responses

evoked by brain activity and to obtain quantitative concentration

changes in two chromophores of oxygenated hemoglobin (oxy-Hb)

and deoxygenated hemoglobin (deoxy-Hb) in blood flow [12,13].

Relative to functional MRI (fMRI), fNIRS has several advantages

such as portability, a lower cost, and a higher temporal sampling

rate ($10 Hz). It is also more convenient for studying special
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populations (e.g., infants and patients with severe movement

disorders). To date, fNIRS has been increasingly used not only to

localize focal brain activation during cognitive engagement [14–

19], but also to map the functional connectivity of spontaneous

brain activity during resting state [20–23]. The resting state is a

natural condition in which there is neither overt perceptual input

nor behavioral output. Due to its convenience and comparability

across different studies and its reflection of spontaneous brain

activity, the resting state is becoming a vital experimental

paradigm to study brain function [24,25]. There are currently

two strategies for deriving resting-state functional connectivity

from fNIRS data: one is a seed-based correlation approach that

computes temporal correlations between a pre-defined channel of

interest and other channels, and the other is independent

component analysis (ICA) which utilizes the whole dataset (i.e.,

all channels) to divide the brain into several statistically

independent functional systems (i.e., components). Using these

two approaches, several studies have demonstrated strong

functional connectivity between bilateral sensorimotor, auditory

and visual systems in adults [20–22] and connectivity changes

during the normal development of early infancy [26] and in

neurological disorders [27]. Importantly, the resting-state func-

tional connectivity revealed by fNIRS has also been proven to be

test-retest reliable at both individual and group levels [28] and

reproducible among various imaging systems [29]. Therefore,

these studies have provided evidence that fNIRS has the power to

detect the functional connectivity of the brain. However, it should

be noted that the current fNIRS analysis methods (e.g., seed- or

ICA-based functional connectivity) can only be used to reveal

single functional connections or connectivity components of the

brain. They cannot uncover organizational principles governing

these connectivity patterns.

In this study, we aim to use resting-state fNIRS (R-fNIRS) and

graph-theory methods to investigate the topological architecture of

functional connectivity patterns in the human brain. The

motivation of the current study is that if R-fNIRS can be used

successfully to map brain connectome and reveal reproducible and

meaningful topological architecture, it will not only broaden our

understanding of functional brain connectome but also expand

methodological framework for current connectome studies. This is

extremely attractive given several unique advantages of fNIRS,

such as high temporal resolution and insensitivity to subject

motion, which enable researchers to exploit dynamically instan-

taneous changes of functional brain connectome and special

populations (e.g., neonates). To this end, we collected R-fNIRS

data of 15 healthy young adults and then constructed brain

functional networks by computing correlation matrices between

the time series of 46 measurement channels for each participant.

The resulting correlation matrices were then averaged to obtain a

population-based connectivity backbone network. Finally, we

calculated several topological parameters (e.g., small-world,

efficiency, module and network hubs) of the group-level brain

network as a function of connectivity thresholds and further

examined the reproducibility of our findings. This allows us to

utilize R-fNIRS data and graph-theory methods to systematically

investigate the topological organization of human brain functional

networks.

Materials and Methods

Participants and Protocol
Participants included 21 healthy young adults who were

between 18 and 26 years of age (15 male, mean age 23.5 years).

During R-fNIRS data collection, the participants were instructed

to remain still and keep their eyes closed without falling asleep. For

each participant, the data collection lasted 10 minutes. We

excluded data from 6 participants because of large motion artifacts

in the signals due to head movements or because of failure in

probe placement due to obstruction by hair (see Data preprocess-

ing). Thus, only data from 15 participants (10 male, mean age 22.3

years) were included in the final analysis. All participants provided

written informed consent, and this study was approved by the

Institutional Review Board of the State Key Laboratory of

Cognitive Neuroscience and Learning at Beijing Normal Univer-

sity.

Data Acquisition
A continuous wave (CW), near-infrared diffuse optical tomog-

raphy instrument (CW6, TechEn Inc., MA, USA) was used for

data acquisition. The instrument generated two wavelengths of

near-infrared light (690 and 830 nm) and measured the time

courses of changes in oxyhemoglobin (oxy-Hb) and deoxyhemo-

globin (deoxy-Hb) for multiple channels based on the modified

Beer-Lambert law [30]. The instrument consisted of 12 laser

sources (each with two wavelengths) and 24 detectors. During the

experiment, these sources and detectors were systematically

embedded in a soft plastic holder that was then secured to the

participant’s head with Velcro straps. Each adjacent source-

detector pair defined a single measurement channel, to be set at

3.2 cm on the spatial separation. This design allowed for 46

different measurement channels, and guaranteed that almost the

whole head, including frontal, temporal, parietal and occipital

lobes of each hemisphere would be covered (Fig. 1A). The

positioning of the probe array was determined according to the

international 10–20 system of electrode placement and referred to

the external auditory canals and vertex of each participant as

landmarks. Specifically, the detectors below channels 17 to 24 in

both hemispheres were set along a coronal line from the vertex to

the external auditory pores, thus their midline was localized in Cz

and the leftmost and rightmost detectors were fitted around T3

and T4, respectively. The position of the array relative to the

landmarks was measured to establish repeatable positioning.

Data Preprocessing
We excluded the data that included motion artifacts by

examining visually sharp changes in the time series of hemoglobin

concentration [27,31–33]. We also used visual inspection to

remove data that contained low signal-to-noise ratio at one or

several channel(s) due to failures in source/detector placement

[21]. With these strict criterions, we ultimately selected 15

participants’ data for further analysis.

For each individual’s R-fNIRS data, we visually inspected all

the R-fNIRS time courses and found that there were unstable

signals in some initial time points of the R-fNIRS scan for several

participants, which could be attributable to the inadaptation of the

subjects to the scanning environments and/or the unachieved

stationary state of the scanning equipment. To obtain relatively

steady signals and rule out the potential effects of unstable signals

on subsequent functional connectivity and network topology

analyses, we discarded the first 2 min data for each participant.

The critical 2 min time point was chosen to ensure the steady of all

time courses from each channel and participant. This procedure is

employed in previous fNIRS studies [34–36]. We then digitally

band-pass filtered (0.009 – 0.08 Hz) the raw optical density data to

reduce the effects of low-frequency drift and high-frequency

neurophysiological noise [22,37]. Based on the filtered data from

the two wavelengths (690 and 830 nm), we calculated the relative

changes in the concentrations of oxy-Hb and deoxy-Hb with the
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modified Beer-Lambert law with a differential path length factor of

6 for each wavelength [38,39]. Note that the sum of oxy-Hb and

deoxy-Hb is defined as total-Hb. In this study, we chose oxy-Hb

signal to perform comprehensive network analysis and evaluate

reproducibility of network metrics across subjects and over time.

Meantime, as a complement to hemoglobin contrasts, deoxy-Hb

and total-Hb were also chosen to investigate whether they have

similar network properties to those of oxy-Hb. The sampling rate

for the optical signal was set to 25 Hz, which resulted in 12000

sample points from each 8 min dataset that could be used for

further analysis.

Construction of fNIRS-based Brain Networks
Nodes and edges are two fundamental elements of a network. In

this study, the nodes were defined naturally as measurement

channels and edges were defined as functional connectivity

between nodes. Functional connectivity was quantified by

computing Pearson correlation coefficients for the time series

between pairs of nodes. Therefore, for each participant we

obtained an N6N correlation matrix (N = 46, the number of

fNIRS channels). We then averaged all of the individual

correlation matrices and converted the resultant population-based

mean correlation matrix into a binary graph (i.e., adjacency

matrix) by applying a predefined correlation threshold, T, such

that edges with absolute connectivity strengths, r(i,j), larger than T

were set to 1 and all others were set to 0:

eij~f1 if Dr(i,j)D§T
0 otherwise ð1Þ

In this study, the correlation threshold T was determined in

terms of sparsity (S) measure that is defined as the number of

actual edges in a network divided by the maximum possible

number of edges in a network. Because there is currently limited

knowledge about R-fNIRS-based network topology, in this study,

we thresholded the mean correlation matrix over the full sparsity

range of 0,S,1 (interval = 0.01), which enables us to study

network behaviors as a function of sparsity level. Figure 1

illustrates the schematic representation of network constructions

using R-fNIRS.

Network Analysis
We analyzed the topological properties of the group-level

functional brain network derived from R-fNIRS data in terms of 8

global and 3 local nodal network metrics. The eight global

network metrics included small-world properties (clustering

coefficient, Cp, characteristic path length, Lp, normalized cluster-

ing coefficient, c, and normalized characteristic path length, l),

efficiency parameters (global efficiency, Eglob, and local efficiency,

Eloc), hierarchy (b), and modularity (Q). These metrics were used

to characterize global topological organization of the whole-brain

network. The 3 nodal metrics included nodal degree (knod ), nodal

efficiency (Enod ), and nodal betweenness (Nbc), which were used to

examine the regional characteristics of the functional brain

network. In the Text S1, we briefly illustrated these metrics with

a graph (or network) G consisting of N nodes and K edges. For

more details about graph metrics, see [40].

Statistical Analysis
To determine whether a network possesses small-worldness,

hierarchy and modularity, the small-world parameters Cp and Lp,

network efficiency Eglob and Eloc, hierarchyb and modularity Q

were compared to corresponding indices derived from 1000

comparable random null networks. The random networks were

generated by preserving the same numbers of nodes and edges and

the same degree distribution as the real brain network [41,42].

Then a z-score was calculated as follows: Z(x)~ xreal{Sxrand T
std(xrand )

, where

x is a network parameter (Cp,Lp,Eglob,Eloc,b or Q) that has a value

xreal for the real brain network and has a mean SxrandT and

standard deviation std(xrand ) for 1000 random networks. A two-

tailed significance level of 0.05 (z-score,21.96 or z-score .1.96)

was used to determine whether the real brain network possesses

significantly non-random architecture.

Reproducibility of Network Metrics
To determine the reproducibility of the network characteristics

derived from R-fNIRS data, we implemented two additional

complementary analyses. First, we divided the 15 participants into

two independent subgroups (subgroup 1: n = 7; subgroup2: n = 8).

There were no significant differences in age or gender between the

two subgroups. Split-half analysis allows us to evaluate the

reproducibility of network properties across participants. Second,

we divided each participant’s whole 8-min dataset into two non-

overlapping continuous 4-min sub-datasets (sub-dataset 1 and sub-

dataset 2), leaving 6,000 data points for each participant in each

sub-dataset. This division allows us to evaluate the reproducibility

of network properties over time. For the both reproducibility

analyses, functional brain networks were constructed and analyzed

separately for each subgroup and each sub-dataset using the

procedures as described above.

Results

Small-worldness and Efficiency
Using R-fNIRS data, we obtained a mean population-level

correlation matrix (Fig. 1) and investigated its network topological

attributes. Before presenting network topological results, we

showed the distribution of correlation values within the matrix

(Fig. 2A) and plotted the connectivity pattern for the topmost

ranked 10% connections (correlation values .0.67) in anatomical

space (Fig. 2B). We found that the correlation values showed an

approximately normal distribution (mean = 0.54) and the connec-

tions were positioned in a structured manner. For subsequent

network analysis, the mean correlation matrix was thresholded

into a series of brain networks over the whole sparsity range of

0,S,1. Figure 3 shows the profiles of small-world parameters

(clustering coefficient and characteristic path length) and network

efficiencies (local efficiency and global efficiency) as functions of

sparsity threshold. For both the real brain network and random

networks, we found that the clustering coefficients (Creal
p and Crand

p )

increased with sparsity threshold and that the characteristic path

lengths (Lreal
p and Lrand

p ) decreased monotonically with sparsity

threshold (Fig. 3A and B). When compared to matched random

networks, the clustering coefficients Creal
p of the real brain network

Figure 1. Flowchart for the construction of a functional brain network using R-fNIRS data. (1) Schematic arrangement of the probe array
(12 sources, red, and 24 detectors, blue, which configurate 46 measurement channels over the whole head, as indicated by digits from 1 to 46). (2)
Extraction of the time course from R-fNIRS data from each measurement channel (i.e., network node). (3) Calculation of the correlation matrix for all
pairs of channels or nodes. (4) Thresholding of the correlation matrix into a binary adjacency matrix. (5) Visualization of the binary adjacency matrix as
a graph.
doi:10.1371/journal.pone.0045771.g001

Brain Networks by fNIRS

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e45771



were larger than those Crand
p of random networks over a sparsity

range of 0.01,S,0.93 (mean z-score = 22.01610.95); however,

the characteristic path lengths Lreal
p of the real brain network were

larger than (but numerically approximate to) those Lrand
p of their

matched random networks over a sparsity range of 0.01,S,0.71

(mean z-score = 6.42610962.3861010) (Fig. 3A and B). These

patterns resulted in normalized clustering coefficients

c~Creal
p

.
Crand

p w1 and normalized characteristic path lengths

l~Lreal
p

.
Lrand

p &1 (Fig. 3C), which are typical features of small-

world topology.

For efficiency measures, local (Ereal
loc and Erand

loc ) and global (Ereal
glob

and Erand
glob ) efficiency values that were derived from both the real

brain network and matched random networks monotonically

increased as a function of sparsity. Nevertheless, the real brain

network exhibited higher local (0.01,S,0.94, mean z-

score = 17.53610.04) and lower (but numerically approximate)

global efficiency (0.01,S,0.71, mean z-

score = 29.82610964.5561010) in comparison to the random

networks (Fig. 3D and E). This result generated a greater-than-1

normalized local efficiency cE~Ereal
loc

�
Crand

loc w1 and an approxi-

mate equal-to-1 normalized global efficiency lE~Ereal
glob

.
Crand

glob &1

(Fig. 3F). These findings suggest that relative to random networks,

the real brain network is approximately equally efficient in

distributed information processing but are more efficient in local

information processing.

Hierarchy
The hierarchy coefficient curve had a profile that was

characterized by an initial sharp drop, followed by a relatively

steady state, and finally a gentle decline with increases in sparsity

(sparsity cutoffs were 18% and 80%). When compared to random

networks, the real functional brain network exhibited significantly

larger hierarchy coefficients over a sparsity range of 0.30,S,0.91,

with the most significant deviation at S = 0.74 (b = 0.35, z-

score = 6.55) (Fig. 4A). Among sparsity values of 0.30,S,0.91,

the mean hierarchy coefficient was 0.3360.05 and the corre-

sponding mean z-score was 4.1061.11. These results demonstrate

a significant non-random hierarchical organization of the func-

tional human brain networks that were based on fNIRS data.

Modularity
The modularity derived from both the real brain network and

random networks decreased monotonically with sparsity threshold

(Fig. 4B). Nevertheless, the real brain network showed significantly

non-random modular structure over almost the whole sparsity

range (0.02,S,0.92) in comparison to random networks. The

mean modularity value over the modular regime (i.e.,

0.02,S,0.92) was 0.2860.16 and the corresponding mean z-

score was 15.6468.75 (Fig. 4B). These results demonstrate a

significant non-random modular organization of fNIRS-based

functional human brain networks.

To further explore the refined modular architecture, we

visualized the modular structure at S = 0.1, 0.2 and 0.3 (Fig. 5).

At S = 0.1, five functional modules were identified at the maximum

network modularity (Qmax = 0.49, z-score = 6.32). Each of these

modules was assigned a different color and was labeled from I to V

as shown in Fig. 5A. Module I (green) consists of 13 nodes that are

mostly from bilateral superior prefrontal and middle frontal areas

that are known to be primarily involved in strategic/executive

functions [43]. Module II (red) consists of 12 nodes and mostly

includes regions from the occipital areas that are specialized for

visual processing. Module III (blue) includes 8 nodes from right

temporal and inferior frontal cortical areas and was therefore

designated the right auditory/language module [44]. Module IV

(pink) is composed of 8 nodes from motor and parietal cortices that

are mainly associated with sensorimotor/spatial functions. Module

V (cyan) includes 5 nodes from inferior frontal cortex and motor

areas. Additionally, we found that these modules merged into

larger clusters as sparsity values increased (Fig. 5B and C); this

merging indicates a greater number of inter-module connections

in the networks. Notably, the identified modules tended to cover

bilateral homologous regions as sparsity values increased.

Figure 2. Characteristics of oxy-Hb-based group-level correlation network. (A) The correlation distribution and (B) its connectivity pattern.
Only the topmost ranked 10% connection with correlation larger than 0.67 (blue line in A) are showed in B.
doi:10.1371/journal.pone.0045771.g002
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Figure 3. Small-world properties and network efficiency of oxy-Hb-based functional networks as a function of sparsity threshold.
(A) Clustering coefficient, Cp; (B) characteristic path length, Lp; (C) normalized clustering coefficients,c, and normalized characteristic path lengths, l;
(D) local efficiency, Eloc; (E) global efficiency, Eglob; and (F) normalized local efficiency,cE , and normalized global efficiency, lE . For a wide range of
sparsity thresholds, the real brain networks have larger values of Cp and Eloc as than random networks; however, the values of Lp and Eglob are
approximately equal, resulting in c.1 and ,1 as well as cE.1 and ,1. These findings imply that R-fNIRS-based functional brain networks have
prominent small-world features and are efficient in information processing. Error bars (A, B, D and E) correspond to standard errors of the mean for
1000 comparable random null networks. The gray areas indicate the sparsity range over which the parameters derived from real brain network are
significantly (P,0.05) different from those derived from comparable random networks.
doi:10.1371/journal.pone.0045771.g003

Figure 4. Hierarchy and modularity of oxy-Hb-based functional networks as a function of sparsity threshold. (A) Hierarchy
coefficients,b, and (B) modularity, Q, of the real (red) and random (green) networks as functions of sparsity threshold. Error bars correspond to
standard errors of the mean for 1000 comparable random null networks. The gray areas indicate the sparsity range over which the parameters
derived from real brain network are significantly (P,0.05) different from those derived from comparable random networks. These results
demonstrate a significant non-random hierarchical and modular organization of the fNIRS-based functional human brain networks.
doi:10.1371/journal.pone.0045771.g004
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Network Hubs
In this study, we identified network hubs according to three

different regional nodal parameters: degree, knod , efficiency, Enod

and betweenness centrality, Nbc. A node was considered a hub if

any one of the three nodal metrics was at least 1 standard

deviation greater than the average of all nodes in the network.

Notably, functional brain networks were constructed over a series

of continuous sparsity threshold (0,S,1) in the current work,

therefore each of the three nodal metrics was a function of sparsity.

To simplify analysis, for each node we calculated a threshold-

independent scalar by calculating the area under curve (over

sparsity) for each nodal metric of degree, efficiency and

betweenness. These scalars were used to identify hub regions.

Sorting in terms of knod , we identified seven hub nodes in the

network (Fig. 6A), which were predominately located in frontal

(ch3, ch18, ch19 and ch20), parietal (ch38) and temporal cortices

(ch28 and ch29). These seven regions were also identified as hubs

according to calculations of nodal efficiency (Fig. 6B). Four out of

these seven nodes (ch3, ch18, ch19 and ch28) were also identified

as hubs based on nodal betweenness (Fig. 6C).

Reproducibility of Our Results
Reproducibility across subjects. We divided all of the

participants into two non-overlapping subgroups to study the

reproducibility of network metrics across subjects. We found that

the mean correlation matrices were very similar between the two

subgroups as shown by both qualitative visual inspection (Fig. 7A

and B) and quantitative spatial correlation analysis (r = 0.82,

P = 0.00) (Fig. 7C). The regional nodal metrics between the two

subgroups also exhibited strong correlations over a wide range of

sparsity values (degree: r = 0.5660.14; efficiency: r = 0.5760.16;

and betweenness: r = 0.5760.20) (Fig. 7D). These results suggest

that fNIRS-based brain network metrics are stable across subjects.

Notably, the variability of nodal betweenness was relatively larger

as compared to the other two nodal metrics.

Reproducibility over time. We divided the whole dataset

into two equal parts, each containing 6000 time points, and

studied the reproducibility of network metrics over time. We

found that the mean correlation matrices from sub-dataset 1

(the first 4 min data) and sub-dataset 2 (the last 4 min data)

were highly resemblant (r = 0.89, P = 0.00) (Fig. 8A, B and C).

Moreover, the regional nodal metrics between the two sub-

datasets also showed strong correlations over a wide range of

sparsity values (degree: r = 0.7960.06; efficiency: r = 0.8160.08;

and betweenness: r = 0.6860.14) (Fig. 8D). These results suggest

that fNIRS-based brain network metrics are highly reproducible

over time. Again, nodal betweenness showed a relative lower

reproducibility and higher variance as compared to the other

two nodal metrics.

Network Properties Derived from Deoxy-Hb and Total-Hb
The construction and analysis of R-fNIRS brain network

were also repeated with deoxy-Hb and total-Hb contrasts. It is

noticed that most network metrics derived from these two

Figure 5. Modular architectures of oxy-Hb-based functional network at several selective sparsity thresholds (0.1, 0.2 and 0.3). Five,
three and two functional modules are separately identified in the functional brain network. The size of each node denotes its relative nodal degree
value in the brain network.
doi:10.1371/journal.pone.0045771.g005

Figure 6. Hubs (red) in oxy-Hb-based functional network. The node sizes indicate their relative nodal centralities normalized to the
corresponding mean for all nodes in the network. A region was considered a hub if its normalized nodal centrality was at least 1 standard deviation
greater than the mean of all the nodes in the network.
doi:10.1371/journal.pone.0045771.g006
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signals exhibited similar profiles to those of oxy-Hb such as

Cp,Lp,c,l,Eglob,Eloc,b, and Q. Moreover, these metrics differed

significantly from those of comparable random networks,

indicating non-random features of efficient small-worldness,

hierarchy and modularity (Figs .9 and 10). To test whether

there exists significant differences in network parameters derived

from oxy-Hb, deoxy-Hb and total-Hb contrasts, we calculated a

threshold-independent scalar of area under the curve (AUC, i.e.,

the integral) for each network metric under each hemoglobin

signal and performed one-way repeated-measure ANOVA

(across subjects) on these scalars. The results showed that

Cp,c,l, Eloc,b, and Q differed significantly (P,0.05) among the

three hemoglobin contrasts. Further post-hoc comparisons

(paired t-tests) revealed that compared with deoxy-Hb-based

networks, oxy-Hb- and total-Hb-based networks had greater Cp

(oxy-Hb . deoxy-Hb: P = 2.44e25; total-Hb . deoxy-Hb:

P = 1.70e25), c(oxy-Hb . deoxy-Hb: P = 1.0e23; total-Hb .

deoxy-Hb: P = 8.71e24), l(oxy-Hb . deoxy-Hb: P = 0.034;

total-Hb . deoxy-Hb: P = 0.0026), Eloc(oxy-Hb . deoxy-Hb:

P = 6.78e25; total-Hb . deoxy-Hb: P = 3.14e25), b (oxy-Hb .

deoxy-Hb: P = 2.36e25; total-Hb . deoxy-Hb: P = 3.2e25), and

Q (oxy-Hb . deoxy-Hb: P = 0.011; total-Hb . deoxy-Hb:

P = 0.0013). Meantime, we also found that compared with oxy-

Hb-based networks, total-Hb-based networks had greater values

in l (total-Hb . oxy-Hb: P = 0.0037) and Eloc (total-Hb . oxy-

Hb: P = 0.017) (Fig. 11).

Discussion

In the present study, we investigated the topological properties

of functional networks of the human brain using R-fNIRS and

graph-theory methods. We found that the R-fNIRS-based

functional brain network exhibited: 1) an optimal small-world

configuration for both localized and distributed information

processing; 2) a hierarchical organization that supports top-down

relationships between nodes and minimizes wiring costs; 3) a

modular architecture where the identified modules correspond to

several well-known brain functions; and 4) heterogeneous nodal

centrality of core hubs. The findings were highly reproducible

across participants and over time. Collectively, we demonstrate

that human brain functional networks can be constructed from R-

fNIRS data and the connectivity networks are specially organized

in the light of several non-trivial wiring principles.

Utilizing R-fNIRS we investigated the topological organization

of functional brain network at a group level. Functional brain

networks can be constructed and further studied at both individual

level [45–48] and group level [11,49–51]. Here, we aim to

systematically characterize topological organization of a popula-

tion-based representative functional brain network capturing the

common connectivity pattern across population (i.e., backbone),

rather than a subject-specific and very detailed network for an

entire individual brain. Furthermore, a previous study indicated

that for R-fNIRS data group-level functional connectivity analyses

have better test-retest reliability in comparison with subject-level

analyses [52]. Nevertheless, studying network topology at group

Figure 7. Reproducibility of oxy-Hb-based functional network properties across subjects. The mean correlation matrices derived from
subgroup 1 (A) and subgroup 2 (B) are highly similar to each other (C). The regional nodal metrics also exhibited strong correlations between the two
subgroups (D) over a wide range of sparsity thresholds (degree: r = 0.5660.14; efficiency: r = 0.5760.16; and betweenness: r = 0.5760.20). These
results suggest a high reproducibility of fNIRS-based brain network metrics across subjects.
doi:10.1371/journal.pone.0045771.g007
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level will inevitably neglect information of inter-subject variances

that are potentially meaningful [53]. Therefore, we reanalyzed our

data individually and the results showed that all individual

networks exhibited small-worldness, modularity and hierarchy

(Fig. 12). Meanwhile, we also noted obvious inter-individual

variances in these network metrics (Fig. 12) that may be related

with individual traits. To better understand these variances, future

studies on the relationship between network topology and

behavior/cognitive ability across individuals will provide insights

into this issue.

We found that the population-based functional brain network

derived from R-fNIRS data exhibited small-world architecture,

which enables both local interconnectivity or cliquishness and

global overall routing simultaneously [54,55]. Small-worldness is a

ubiquitous characteristic of complex systems [56], including the

human brain [57]. Utilizing resting-state fMRI data, previous

studies also demonstrated the small-wordness in functional brain

networks across populations [49,50]. For example, Salvador and

colleagues found that the local clustering coefficient of group-level

brain network was approximately two times greater than those of

random networks, whereas the mean shortest path length between

any two brain regions was approximately equivalent to the

random network [49]. Here we constructed functional brain

networks using novel R-fNIRS and also observed small-world

topology, suggesting that the small-worldness is a universal

principle for functional wiring of the human brain regardless of

the distinct mechanisms of different imaging techniques. The

results provide further support for the notion that the human brain

is naturally organized in an optimal fashion for maximizing the

efficiency of information processing and minimizing required

wiring costs. However, it should be noted that a directly

quantitative comparison between the current study and those

abovementioned fMRI studies is unsuitable because of different

network sizes (46 in the current study vs. 45 in [49] vs. 90 in [50])

and connectivity measures (Pearson correlation in the current

study vs. partial correlation [49] vs. wavelet correlation [50])

employed in these studies, all of which can affect network topology

[47,58–60]. Further work is needed to quantitatively characterize

the relationship of network topology between these two modalities

by simultaneously recording resting-state fNIRS and fMRI signals

[61].

In addition to small-world topology, the R-fNIRS-based

functional brain networks also showed hierarchal and modular

structures. Hierarchical organization refers to a configuration in

which small groups of nodes are organized into increasingly large

groups in a hierarchical manner [62]. This organization gives a

network non-trivial features that support top-down relationships

and minimize wiring costs but is vulnerable to attacks on hubs.

Based on inter-regional covariation of gray matter volume in MRI

data, Bassett and colleagues reported significant levels of

hierarchical organization in anatomical human brain networks

[63]. As for functional brain networks, non-random hierarchical

architectures are also reported based on R-fMRI data [59,64].

These findings suggest that hierarchal organization is a general

principle governing the interconnected patterns of both structural

and functional human brain networks. Here, using R-fNIRS data

Figure 8. Reproducibility of oxy-Hb-based functional network properties over time. The mean correlation matrices derived from sub-
dataset 1 (A) and sub-dataset 1 (B) are highly similar to each other (C). The regional nodal metrics also exhibited strong correlations between the two
sub-datasets (D) over a wide range of sparsity thresholds (degree: r = 0.7960.06; efficiency: r = 0.8160.08; and betweenness: r = 0.6860.14). These
results suggest a high reproducibility of fNIRS-based brain network metrics over time.
doi:10.1371/journal.pone.0045771.g008
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our findings provide new evidence in support of the generality of

hierarchical organization in human brain networks. Numerous

studies have found evidence of modular architecture in the

anatomical and functional human brain networks [65]. Modular

structure in a network has the advantage of allowing evolutionary

or developmental optimization of one functional module without

risking a loss of function in other modules and has been proven to

be an efficient solution to multiple selection pressures on network

evolution [66]. Using the novel R-fNIRS, we also detected

evidence of modular topology in human brain networks with

functionally related structures in the same modules (e.g., visual

module).These results lend support to the notion of modularity as

a fundamental design principle in brain networks of the human

brain. However, we note that the modularity derived from R-

fNIRS-based brain networks here seems to be smaller than that of

population-based brain networks derived from R-fMRI data [11]

(0.49 vs. 0.66) at approximately comparable sparsity. These

differences could be due to the different network sizes or different

temporal resolutions (46 vs. 90).

Beyond global organization metrics of small-worldness, hierar-

chy and modularity, we also investigated local nodal centrality.

Nodes with high centrality (i.e., hubs) play pivotal roles in

controlling the information flow by serving as critical gateways for

the integration of diverse informational sources, and they balance

the opposing pressure to evolve segregated, specialized pathways.

Hubs also help to minimize wiring and metabolism costs by

providing a limited number of long-distance connections that

integrate local networks [67]. In the present study, we used three

nodal measures to characterize nodal centrality from different

perspectives and to comprehensively identify hubs in the R-

fNIRS-based functional brain network. Four regions that were

predominately located in frontal and temporal regions were

consistently identified as hubs. Using other neuroimaging tech-

niques (e.g., diffusion tensor imaging, structural MRI and resting-

state fMRI), these regions have also been proven to serve as hubs

in structural and/or functional brain networks [50,68,69].

Nonetheless, we noted that several commonly identified hub

regions previously (e.g., posterior parietal regions) were not

Figure 9. Small-world properties, network efficiency, Hierarchy (b), and modularity (Q) of deoxy-Hb-based functional networks
as a function of sparsity threshold. Error bars correspond to standard deviation of the mean for 1000 comparable random null networks (blue
lines). The gray areas indicate the sparsity range over which the parameters derived from real brain network (red lines) are significantly (P,0.05)
different from those derived from comparable random networks. These results demonstrate efficient small-world properties, significant non-random
hierarchical and modular organization of deoxy-Hb-based functional brain networks.
doi:10.1371/journal.pone.0045771.g009
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detected in the current study. This may be due to the limited

coverage and spatial localization of R-fNIRS. Together, despite of

some inconsistencies, hub phenomenon (heterogeneous nodal

centrality) is another universal feature of human brain networks.

To evaluate the robustness of the entire network features studied

above, we performed split-half analyses to test the reproducibility

of our results across subjects and over time. The results revealed

that the R-fNIRS-based functional brain networks were highly

reproducible across subjects and stable over time. These encour-

aging results suggest that R-fNIRS could be considered as a

promising and reliable technique for the study of topological

properties of functional brain networks. However, further meth-

odological studies are needed, such as studies of test-retest

reliability.

The potential usefulness of fNIRS in brain network studies

could be attributed to its unique advantages such as safety,

portability, technical simplicity, and low cost relative to the costs of

other imaging techniques, such as fMRI. More importantly,

fNIRS can be performed in a quiet environment and can

accommodate measurements from a person in a sitting position

without physical restraint, which makes it an ideal choice for

studying members of special populations who are not suited for

participation in fMRI studies (e.g., neonates and infants) or people

who suffer from severe movement disorders (e.g., patients with

attention deficit hyperactivity disorder). Moreover, fNIRS has a

high temporal sampling rate (typically ,10 Hz, 25 Hz in our

study) and thus can avoid signal bias due to high-frequency cardiac

or respiratory noise or low-frequency fluctuations in the hemody-

namic signal. Therefore, it provides a promising technique for

measuring neural activity. Last but not least, fNIRS provides a

comprehensive assessment of hemodynamics and metabolism by

measuring the changes in oxy-Hb, deoxy-Hb and total-Hb. These

hemoglobin species have distinct relationships to the neuronal or

vascular origin. Nevertheless, we show that all the networks

derived from the three hemodynamic contrasts consistently display

several non-random features, including efficient small-worldness,

hierarchy and modularity. These findings strongly suggest that

fNIRS can offer unique opportunities to exploit organizational

Figure 10. Small-world properties, network efficiency, Hierarchy (b), and modularity (Q) of total-Hb-based functional networks as
a function of sparsity threshold. Error bars correspond to standard deviation of the mean for 1000 comparable random null networks (blue lines).
The gray areas indicate the sparsity range over which the parameters derived from real brain network (red lines) are significantly (P,0.05) different
from those derived from comparable random networks. Again, these results demonstrate efficient small-world properties, significant non-random
hierarchical and modular organization of total-Hb-based functional brain networks.
doi:10.1371/journal.pone.0045771.g010
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principles governing functional brain networks. However, it should

be noted that there also exists significant differences in quantitative

network topology among the three contrasts (Fig. 11). The

discrepancy could be attributed to distinct relationships to

neuronal or vascular origin among the three hemoglobin species.

Future studies are requested to determine the origin of these

discrepancies and to study specificity of different contrasts in

revealing condition- or disease-related effects on topological

architecture of the brain. Collectively, given the aforementioned

advantages of fNIRS and the reproducible and reliable hallmarks

of fNIRS in characterizing brain network organization that have

been demonstrated in the current study, we suggest that fNIRS be

used to study system-level brain network architecture in people

with conditions of development or various neurological and

psychiatric disorders, for whom other imaging techniques are not

suitable.

There are several limitations of fNIRS-based studies of brain

networks. Frist, fNIRS has a spatial resolution on the order of 10

to 20 mm, which is lower than the spatial resolution of fMRI (1 to

3 mm). Limited spatial resolution may directly result in coarse

spatial localization of brain regions. Thus, it is difficult to

accurately locate the corresponding functional brain area for each

network node. Moreover, the number of probes (sources and

detectors) is limited in most fNIRS systems, which makes it difficult

to apply fNIRS for whole-brain network studies and further

inhibits the exploration of topological connectivity among multiple

cortical neural systems. Second, current methodology in process-

ing fNIRS signals is far from perfect, especially in denoising (e.g,

motion artifacts). Therefore, potential noises may contaminate

accurate characterization of network topology. Last but not least,

fNIRS is limited in its depth of penetration, so it is impossible to

investigate the functional connectivity of deeper cortical structures

such as the thalamus and caudate nucleus. These limitations are

Figure 11. The differences of network properties derived from oxy-Hb, deoxy-Hb and total-Hb signals. Bars show the mean areas under
curves (AUC) of (A) small-world parameters (Cp, Lp, c and l), (B) network efficiency (Eloc and Eglob), (C) hierarchy coefficient (b) and modularity (Q). Error
bars correspond to standard deviation of the mean across participants. The asterisk indicates P,0.05 and double asterisk indicates P,0.01.
doi:10.1371/journal.pone.0045771.g011
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considered to be open and important issues in the development of

fNIRS investigation techniques.

Conclusions
In summary, we used R-fNIRS to study the topological

organization of functional networks in the human brain and

observed several predominant principles underlying its wiring,

including small-worldness, hierarchy, modularity and hubs. The

current study presents a methodological framework for R-fNIRS

in performing functional brain network studies that could be

further extended to explore normal development, aging, and

various diseases, such as stroke in infants, from an integration

perspective.
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